Cosmic Rays Intensify: May 2017

May 7, 2017: As the sunspot cycle declines, we expect cosmic rays to increase. Is this actually happening? The answer is “yes.” Spaceweather.com and the students of Earth to Sky Calculus have been monitoring radiation levels in the stratosphere with frequent high-altitude balloon flights over California. Here are the latest results, current as of May 6, 2017:

The data show cosmic ray levels intensifying with an approximately 13% increase since March 2015.

Cosmic rays are high-energy photons and subatomic particles accelerated in our direction by distant supernovas and other violent events in the Milky Way. Usually, cosmic rays are held at bay by the sun’s magnetic field, which envelops and protects all the planets in the Solar System. But the sun’s magnetic shield is weakening in 2017 as the solar cycle shifts from Solar Maximum to Solar Minimum. More and more cosmic rays are therefore reaching our planet.

How does this affect us? Cosmic rays penetrate commercial airlines, dosing passengers and flight crews enough that pilots are classified as occupational radiation workers. Some research shows that cosmic rays can seed clouds and trigger lightning, potentially altering weather and climate. Furthermore, there are studies ( #1, #2, #3, #4) linking cosmic rays with cardiac arrhythmias in the general population.

The sensors we send to the stratosphere measure X-rays and gamma-rays, which are produced by the crash of primary cosmic rays into Earth’s atmosphere. The energy range of the sensors, 10 keV to 20 MeV, is similar to that of medical X-ray machines and airport security scanners.

Arctic Space Weather Balloon Launch

March 3, 2017: Spaceweather.com is going to Sweden–and we’re taking a team of student researchers from Earth to Sky Calculus with us. For a week beginning on March 9th we plan to launch a series of space weather balloons equipped with cosmic ray sensors and cameras into the stratosphere above the Arctic Circle. At the same time, Earth to Sky launch teams in Chile and California will be sending up identical payloads, forming an intercontinental balloon network:

We’re doing this for three reasons:

1. To understand Earth’s changing radiation environment: Regular monitoring of the stratosphere over California shows that cosmic rays have intensified more than 10% since 2015.  Because of a recent decline in the solar cycle, more and more cosmic rays are reaching the inner solar system and penetrating the atmosphere of our planet. Earth’s magnetic field should protect us against these rays, but geomagnetism is weakening. Globally, Earth’s magnetic field has declined in strength by 10% since the 19th century with changes accelerating in recent years, according to measurements by Europe’s SWARM satellites. To understand Earth’s global response to these changes, we must launch balloons and sample radiation from widely-spaced locations.  The upcoming network launch will span three continents, more than 14,000 km of linear distance, and 90+ degrees of latitude.


Above: Satellite data show that Earth’s magnetic field is changing: full story.

2. To photograph the Northern Lights: We will be launching balloons from Abisko, Sweden, 250 km inside the Arctic Circle. Abisko is famous for spectacular auroras. One of our payloads will carry a low-light camera capable of photographing these lights from the stratosphere. Even at 120,000 feet, the balloon will be well below the auroras, but we will be a lot closer than any camera on the ground

3. To sample polar stratospheric clouds: During winter months, the stratosphere above the Arctic Circle sometimes fills with icy clouds so colorful, they are likened to the aurora borealis. Polar stratospheric clouds (PSCs) are a sign of extremely cold temperatures in the stratosphere and some types of PSCs are responsible for ozone destruction. Our space weather balloons can fly right through these clouds, sampling their temperature, pressure, and ambient levels of radiation.  We can also photograph them from the inside–a possible first!


Above: Polar stratospheric clouds over Kiruna, Sweden, on Feb. 14. Credit: Mia Stålnacke

Stay tuned for daily updates beginning March 9th.

Cosmic Rays Continue to Intensify

Nov. 15, 2016: As the sunspot cycle declines, we expect cosmic rays to increase. Is this actually happening? The answer is “yes.” Spaceweather.com and the students of Earth to Sky Calculus have been monitoring radiation levels in the stratosphere with frequent high-altitude balloon flights over California. Here are the latest results, current as of Nov. 11, 2016:

Data show that cosmic ray levels are intensifying with an 11% increase since March 2015.

Cosmic rays are high-energy photons and subatomic particles accelerated in our direction by distant supernovas and other violent events in the Milky Way. Usually, cosmic rays are held at bay by the sun’s magnetic field, which envelops and protects all the planets in the Solar System. But the sun’s magnetic shield is weakening as the solar cycle shifts from Solar Max to Solar Minimum. As the sunspot cycle goes down, cosmic rays go up.

The sensors we send to the stratosphere measure X-rays and gamma-rays which are produced by the crash of primary cosmic rays into Earth’s atmosphere. In this way we are able to track increasing levels of radiation. The increase is expected to continue for years to come as solar activity plunges toward a deep Solar Minimum in 2019-2020.

Recently, we have expanded the scope of our measurements beyond California with launch sites in three continents: North America, South America and soon above the Arctic Circle in Europe. This Intercontinental Space Weather Balloon Network will allow us to probe the variable protection we receive from Earth’s magnetic field and atmosphere as a function of location around the globe.

Sunspot Cycle at Lowest Level in 5 Years

Nov. 15, 2016: The sun has looked remarkably blank lately, with few dark cores interrupting the featureless solar disk.  This is a sign that Solar Minimum is coming.  Indeed, sunspot counts have just reached their lowest level since 2011. With respect to the sunspot cycle, you are here:

The solar cycle is like a pendulum, swinging back and forth between periods of high and low sunspot number every 11 years. These data from NOAA show that the pendulum is swinging toward low sunspot numbers even faster than expected. (The red line is the forecast; black dots are actual measurements.). Given the current progression, forecasters expect the cycle to bottom out with a deep Solar Minimum in 2019-2020.

Solar Minimum is widely misunderstood.  Many people think it brings a period of dull quiet. In fact, space weather changes in interesting ways. For instance, as the extreme ultraviolet output of the sun decreases, the upper atmosphere of Earth cools and collapses. This allows space junk to accumulate around our planet. Also, the heliosphere shrinks, bringing interstellar space closer to Earth; galactic cosmic rays penetrate the inner solar system and our atmosphere with relative ease. (More on this below.) Meanwhile, geomagnetic storms and auroras will continue–caused mainly by solar wind streams instead of CMEs. Indeed, Solar Minimum is coming, but it won’t be dull.

COSMIC RAYS CONTINUE TO INTENSIFY: As the sunspot cycle declines, we expect cosmic rays to increase. Is this actually happening? The answer is “yes.” Spaceweather.com and the students of Earth to Sky Calculus have been monitoring radiation levels in the stratosphere with frequent high-altitude balloon flights over California. Here are the latest results, current as of Nov. 11, 2016:

Data show that cosmic ray levels are intensifying with an 11% increase since March 2015.

Cosmic rays are high-energy photons and subatomic particles accelerated in our direction by distant supernovas and other violent events in the Milky Way. Usually, cosmic rays are held at bay by the sun’s magnetic field, which envelops and protects all the planets in the Solar System. But the sun’s magnetic shield is weakening as the solar cycle shifts from Solar Max to Solar Minimum. As the sunspot cycle goes down, cosmic rays go up.

The sensors we send to the stratosphere measure X-rays and gamma-rays which are produced by the crash of primary cosmic rays into Earth’s atmosphere. In this way we are able to track increasing levels of radiation. The increase is expected to continue for years to come as solar activity plunges toward a deep Solar Minimum in 2019-2020.

Recently, we have expanded the scope of our measurements beyond California with launch sites in three continents: North America, South America and soon above the Arctic Circle in Europe. This Intercontinental Space Weather Balloon Network will allow us to probe the variable protection we receive from Earth’s magnetic field and atmosphere as a function of location around the globe.

Intercontinental Space Weather Balloon Network

For the past 2 years, Spaceweather.com and the students of Earth to Sky Calculus have been launching “space weather balloons” to measure cosmic rays in the atmosphere.  Regular flights over California show that atmospheric radiation is intensifying in response to changes in the solar cycle.  Now, our monitoring program is going global.  In recent months we have been developing launch sites in multiple US states as well as South America and Europe. This is what the International Space Weather Ballooning Network looks like in October 2016:

Recent additions expand our coverage north of the Arctic Circle (Sweden) and closer to the core of the South Atlantic Anomaly (Argentina).  We also hope to add a site in Antarctica in 2018.

The purpose of launching balloons from so many places is to map out the distribution of cosmic rays around our planet. A single launch site is simply not enough to reveal the nonuniform shielding of our planet’s magnetic field and the complicated response of our atmosphere to changes in solar activity.

Our first test of the network validated these ideas. During a 48 hour period from August 20th-22nd we launched 4 balloons in quick succession from southern Chile, California, Oregon, and Washington. The ascending payloads sampled atmospheric radiation (X-rays and gamma-rays) from ground level to the stratosphere over a geographical range of more than 10,000 km. Here are the results:

The curves show radiation levels vs. altitude for each of the four sites. Numbers in parentheses are magnetic latitude–a measure of distance from Earth’s magnetic equator.

At a glance we can see that atmospheric radiation is a strong function of magnetic latitude. Washington State at +53o has more than twice the amount of radiation as southern Chile at -29o–despite the fact that the Chilean balloon flew into the outskirts of the South Atlantic Anomaly. Clearly, Earth’s magnetic field provides very uneven protection against cosmic rays.

To explore these findings further, we are planning additional network launches every month from now on, adding new sites as often as possible. A launch from inside the Arctic Circle in January 2017 is highly anticipated. Stay tuned for updates from the Intercontinental SWx Balloon Network.

New Maps of the South Atlantic Anomaly

by Dr. Tony Phillips (Spaceweather.com)

Sept. 30, 2016: Researchers have long known that one of the van Allen Radiation Belts dips down toward Earth over South America, creating a zone of high radiation called “The South Atlantic Anomaly” (SAA). Since its discovery in 1958, the SAA has been shape-shifting, growing larger and intensifying.  A map published just last week in the American Geophysical Union’s journal Space Weather Quarterly outlines the anomaly with new precision:

When a spacecraft in low-Earth orbit passes through the anomaly, “the radiation causes faults in spacecraft electronics and can induce false instrument readings,” explains Bob Schaefer of the Johns Hopkins University Applied Physics Lab, lead author of the paper reporting the results. “We actually used these spurious signals to map out the radiation environment at an altitude of 850 km.”

Specifically, they looked at pulses of noise in an ultraviolet photometer carried aboard many polar orbiting Defense Meteorological Satellite Program (DMSP) satellites. When high-energy protons in the SAA pass through these sensors, they  produce spurious signals–or, in the case of this study, valuable data. By monitoring the rate of spurious UV pulses, the researchers were able to trace the outlines of the anomaly and monitor its evolution over a period of years.

They found that the anomaly is slowly drifting north and west at rates of 0.16 deg/yr and 0.36 deg/yr, respectively. Currently, it is most intense over a broad region centered on Sao Paulo, Brazil, including much of Paraguay, Uruguay, and northern Argentina. They also detected a seasonal variation: On average, the SAA is most intense in February and again in September-October. In this plot, yearly average counts have been subtracted to reveal the double-peaked pattern:

One maximum coincides with an equinox, but the other does not. The authors were not able to explain the origin of this unexpected pattern.

The solar cycle matters, too, as the data revealed a yin-yang anti-correlation with sunspots. “During years of high solar activity, the radiation intensity is lower, while during solar quiet years the radiation intensity is higher,” writes Schaefer.

According to orthodox thinking, the SAA reaches down from space to within about 200 km of Earth’s surface. Below that altitude, its effects should be mitigated by the shielding of Earth’s atmosphere and geomagnetic field. To test this idea, Spaceweather.com and Earth to Sky Calculus have undertaken a program to map the SAA from below using weather balloons equipped with radiation sensors.  Next week we will share the results of our first flight from a launch site in Chile.  Stay tuned!

Cosmic Rays are Intensifying

by Dr. Tony Phillips (Spaceweather.com)

Aug. 30, 2016: Researchers have long known that solar activity and cosmic rays have a yin-yang relationship. As solar activity declines, cosmic rays intensify. Lately, solar activity has been very low indeed. Are cosmic rays responding? The answer is “yes.” Spaceweather.com and the students of Earth to Sky Calculus have been using helium balloons to monitor cosmic rays in the stratosphere over California. Their latest data show an increase of almost 13% since 2015.


Cosmic rays, which are accelerated toward Earth by distant supernova explosions and other violent events, are an important form of space weather. They can seed clouds, trigger lightning, and penetrate commercial airplanes. Furthermore, there are studies ( #1, #2, #3, #4) linking cosmic rays with cardiac arrhythmias and sudden cardiac death in the general population.

Why are cosmic rays intensifying? The main reason is the sun. Solar storm clouds such as coronal mass ejections (CMEs) sweep aside cosmic rays when they pass by Earth. During Solar Maximum, CMEs are abundant and cosmic rays are held at bay. Now, however, the solar cycle is swinging toward Solar Minimum, allowing cosmic rays to return. Another reason could be the weakening of Earth’s magnetic field, which helps protect us from deep-space radiation.

The radiation sensors onboard our helium balloons detect X-rays and gamma-rays in the energy range 10 keV to 20 MeV. These energies span the range of medical X-ray machines and airport security scanners.

The data points in the graph above correspond to the peak of the Reneger-Pfotzer maximum, which lies about 67,000 feet above central California. When cosmic rays crash into Earth’s atmosphere, they produce a spray of secondary particles that is most intense at the entrance to the stratosphere. Physicists Eric Reneger and Georg Pfotzer discovered this maximum using balloons in the 1930s and it is what we are measuring today.

Cosmic Rays vs. Clouds

The connection between cosmic rays and clouds has long been controversial.  Some researchers hold that cosmic rays hitting Earth’s atmosphere create aerosols which, in turn, seed clouds.  This could make cosmic rays an important player in weather and climate.  Other researchers are less convinced.  Although some laboratory experiments support the idea that cosmic rays help seed clouds, skeptics say the effect is too small to substantially affect the cloudiness of our planet or to avert the course of climate change.

A new study just published in the Aug. 19th issue of Journal of Geophysical Research: Space Physics comes down in favor of cosmic rays. A team of scientists from the Technical University of Denmark (DTU) and the Hebrew University of Jerusalem has linked sudden decreases in cosmic rays (called “Forbush Decreases”) to changes in Earth’s cloud cover.

Forbush Decreases occur when solar storms called “coronal mass ejections (CMEs)” sweep past Earth.  Magnetic fields in CMEs deflect cosmic rays and, essentially, sweep some of the cosmic rays away from our planet.  The research team led by Jacob Svensmark of DTU identified the strongest 26 Forbush Decreases between 1987 and 2007, and looked at ground-based+satellite records of cloud cover to see what happened.  In a press release, their conclusions were summarized as follows: “[Strong Forbush Decreases] cause a reduction in cloud fraction of about 2 percent corresponding to roughly a billion tonnes of liquid water disappearing from the atmosphere.”

If true, that’s amazing.  It would also underscore the importance of measuring cosmic rays in the atmosphere.  Recent balloon flights by Spaceweather.com and Earth to Sky Calculus show that cosmic rays are intensifying. Cloudy days, anyone?

Solar Eclipse Balloon Network

We are actively raising funds for the Solar Balloon Eclipse Network. Scroll down for a list of unique gifts flown to the edge of space.

Experience the Great American Solar Eclipse from the edge of space! Help us create the first-ever 360-degree movie of the Moon’s shadow sweeping across the continental U.S. during a total eclipse of the sun.

Spaceweather.com and the students of Earth to Sky Calculus have developed a balloon payload that can photograph solar eclipses from the stratosphere. This sets the stage for a one-of-a-kind photography experiment: On August 21, 2017, the Moon will pass in front of the sun over the USA, producing a total eclipse visible from coast to coast. We will launch balloons to record the event from multiple points along the path of totality. The pins show our confirmed launch sites so far:

Floating more than 100,000 feet above the clouds, the balloons will have an unobstructed view of the eclipse.  Each payload will be equipped with a 360-degree camera.  This camera will record not only the sun’s ghostly corona in the sky above, but also the Moon’s dark shadow racing across the landscape below. When the eclipse is finished, we will combine the footage to create a unique video portrait of an eclipse sweeping across the American continent. This will be the first time in history a movie of a full eclipse as it moves across the United States is captured from the stratosphere.

Our payload has already traveled to the stratosphere and photographed a partial solar eclipse in Oct. 2014:

matrixTo test the payload under conditions of totality, a team of students and parents from Earth to Sky Calculus visited Indonesia on March 9, 2016.  They were stationed on a beach on the island of Belitung when the Moon’s shadow enveloped them for 3 full minutes. Our spherical eclipse camera and other optics did a great job recording the event.

belitung_stripThere’s more to our mission than photography, however. We are also going to conduct a unique experiment in atmospheric radiation.

For the past three years we have been flying balloons to the stratosphere equipped with neutron, X-ray, and gamma-ray sensors.  As a result of these flights, we’ve discovered that cosmic rays in Earth’s atmosphere are intensifying.  Here is a plot of radiation dose rates over California:

radplot_stripWhat’s happening over the rest of the country? The solar eclipse gives us a chance to find out.  With teams launching balloons and radiation sensors from as many as a dozen sites, we can get a unique snapshot of the cosmic ray environment in the North American atmosphere from ground level to 120,000 feet and from coast to coast.

Readers, would you like to join the Solar Eclipse Balloon Network? There are many ways you can help.

We still need lots of hardware for our payloads–including more radiation sensors, GPS trackers, and cameras. To fund the cost of the launch sites and balloon payloads, we are selling eclipse-related products on our Earth to Sky website. Purchasing these products will allows us to by the crucial items needed for each launch site and to dispatch teams of students across the country to study the Great American Solar Eclipse from the edge of space. With enough funding we can launch multiple balloons from each site, increasing the footage we can take and the number of people who can participate. A limited number of people can even join us in the path of totality!

We are offering a variety of eclipse-related products on our website. If you are interested in participating directly at a launch site and supporting the Solar Eclipse Balloon Network at a higher level, please visit our GoFundMe campaign.

Safe Solar Eclipse Viewing Glasses:

snoopy4_cropGet ready for the Great American Solar Eclipse! These safe solar glasses will allow you to view any phase of the solar eclipse without fear of damage to your eyes. The Family Pack includes 3 pairs of glasses and costs only $29.95.

And there’s a bonus: They have all been to the edge of space! On June 23, 2017, the students of Earth to Sky Calculus flew a payload-full of solar glasses to the stratosphere onboard a high-altitude space weather balloon. The glasses ascended more than 95,000 feet above the Sierra Nevada mountains of central California before parachuting back to Earth.
Each Family Pack of solar eclipse glasses comes with a unique gift card showing the glasses floating at the top of Earth’s atmosphere. The interior of the card tells the story of the flight and confirms that these items have been to the edge of space and back again.
Price: $29.95

Solar Eclipse T-Shirt:

tees_strip600Become an honorary member of the Earth to Sky Solar Eclipse Team! Official club tee-shirts are available in four sizes (S, M, L and XL) and two styles (Male and Female). The shirt was designed by Earth to Sky founding student Ginger Perez. All proceeds support student space weather research and our Solar Eclipse Balloon Network. (Specify the size and style you want in the comments field at checkout.)

Price: $39.95.

Solar Eclipse Pendant:

pendant1_strip2

This solar eclipse-themed pendant flew to the stratosphere on July 2, 2017, attached to the payload of a giant space weather balloon. Floating at an altitude 105,000 feet above Earth’s surface, it made contact with space, experiencing temperatures as low as -63 C and a dose rate of cosmic rays 100x Earth normal. Artwork on the pendant commemorates the upcoming Great American Solar Eclipse on Aug. 21, 2017.
Buy one of these pendents now and for no additional charge we will fly it back to the stratosphere during the total eclipse on Aug. 21, 2017, where it will be enveloped by the shadow of the Moon over our launch site in Oregon. To make this happen, please make a note in the COMMENTS BOX of your shopping cart: “Fly my pendant during the eclipse!”
Each pendant comes with a unique gift card showing the jewelry floating at the top of Earth’s atmosphere. The interior of the card tells the story of the flight and confirms that this gift has been to the edge of space and back again.
Price: $79.95.

stamps_strip

On June 20, 2017, the US Postal Service issued a first-of-its-kind Total Eclipse of the Sun Forever stamp, which commemorates the August 21 eclipse. On July 2nd, we flew them to the edge of space 105,000 feet above central California. You can have a sheet of 16 stamps for the collector’s price of $89.95. They make great Birthday and Christmas gifts.
These rare temperature-sensitive stamps depict the Moon eclipsing the sun. When the stamp gets cold, the Moon darkens, forming a space-black disk. During our balloon flight on July 2nd, the temperature dropped to -63 C. The Moon darkened in the extreme cold of the stratosphere, then lightened again when the payload parachuted back to Earth, landing on the warm foothills of the Sierra Nevada mountains near Big Pine CA. The recovered stamps are perfectly intact and continue to change their appearance as intended when exposed to heat and cold.
The Total Eclipse of the Sun stamp is a Forever stamp, which is always equal in value to the current First-Class Mail 1-ounce price.
Each sheet of 16 stamps comes with a unique gift card showing the stamps floating at the top of Earth’s atmosphere. The interior of the card tells the story of the flight and confirms that this gift has been to the edge of space and back again. You will receive the stamps in a black protective envelope that protects the stamps from UV radiation and preserves them for future gift-giving.
Price: $89.95

Thank you for your support!

Earth’s Magnetic Field is Changing

by Dr. Tony Phillips (Spaceweather.com)

Anyone watching a compass needle point steadily north might suppose that Earth’s magnetic field is a constant. It’s not. Researchers have long known that changes are afoot. The north magnetic pole routinely moves, as much as 40 km/yr, causing compass needles to drift over time. Moreover, the global magnetic field has weakened 10% since the 19th century.

A new study by the European Space Agency’s constellation of Swarm satellites reveals that changes may be happening even faster than previously thought. In this map, blue depicts where Earth’s magnetic field is weak and red shows regions where it is strong:

Data from Swarm, combined with observations from the CHAMP and Ørsted satellites, show clearly that the field has weakened by about 3.5% at high latitudes over North America, while it has strengthened about 2% over Asia. The region where the field is at its weakest – the South Atlantic Anomaly – has moved steadily westward and weakened further by about 2%. These changes have occured over the relatively brief period between 1999 and mid-2016.

Earth’s magnetic field protects us from solar storms and cosmic rays. Less magnetism means more radiation can penetrate our planet’s atmosphere. Indeed, high altitude balloons launched by Spaceweather.com routinely detect increasing levels of cosmic rays over California. Perhaps the ebbing magnetic field over North America contributes to that trend.

As remarkable as these changes sound, they’re mild compared to what Earth’s magnetic field has done in the past. Sometimes the field completely flips, with north and the south poles swapping places. Such reversals, recorded in the magnetism of ancient rocks, are unpredictable. They come at irregular intervals averaging about 300,000 years; the last one was 780,000 years ago. Are we overdue for another? No one knows.

Swarm is a trio of satellites equipped with vector magnetometers capable of sensing Earth’s magnetic field all the way from orbital altitudes down to the edge of our planet’s core. The constellation is expected to continue operations at least until 2017, and possibly beyond, so stay tuned for updates.